4 research outputs found

    Handwritten Signature Verification using Deep Learning

    Get PDF
    Every person has his/her own unique signature that is used mainly for the purposes of personal identification and verification of important documents or legal transactions. There are two kinds of signature verification: static and dynamic. Static(off-line) verification is the process of verifying an electronic or document signature after it has been made, while dynamic(on-line) verification takes place as a person creates his/her signature on a digital tablet or a similar device. Offline signature verification is not efficient and slow for a large number of documents. To overcome the drawbacks of offline signature verification, we have seen a growth in online biometric personal verification such as fingerprints, eye scan etc. In this paper we created CNN model using python for offline signature and after training and validating, the accuracy of testing was 99.70%

    Influence of Loss Function on Left Ventricular Volume and Ejection Fraction Estimation in Deep Neural Networks

    Get PDF
    Quantification of the left ventricle shape is crucial in evaluating cardiac function from 2D echocardiographic images. This study investigates the applicability of established loss functions when optimising the U-Net model for 2D echocardiographic left ventricular segmentation. Our results indicate loss functions are a significant component for optimal left ventricle volume measurements when established segmentation metrics could be imperceptible

    Deep Active Learning for Left Ventricle Segmentation in Echocardiography

    No full text
    The training of advanced deep learning algorithms for medical image interpretation requires precisely annotated datasets, which is laborious and expensive. Therefore, this research investigates state-of-the-art active learning methods for utilising limited annotations when performing automated left ventricle segmentation in echocardiography. Our experiments reveal that the performance of different sampling strategies varies between datasets from the same domain. Further, an optimised method for representativeness sampling is introduced, combining images from feature-based outliers to the most representative samples for label acquisition. The proposed method significantly outperforms the current literature and demonstrates convergence with minimal annotations. We demonstrate that careful selection of images can reduce the number of images needed to be annotated by up to 70%. This research can therefore present a cost-effective approach to handling datasets with limited expert annotations in echocardiography

    Automated Analysis of Mitral Inflow Doppler Using Deep Neural Networks

    No full text
    Doppler echocardiography is a widely applied modality for the functional assessment of heart valves, such as the mitral valve. Currently, Doppler echocardiography analysis is manually performed by human experts. This process is not only expensive and time-consuming, but often suffers from intra- and inter-observer variability. An automated analysis tool for non-invasive evaluation of cardiac hemodynamic has potential to improve accuracy, patient outcomes, and save valuable resources for health services. Here, a robust algorithm is presented for automatic Doppler Mitral Inflow peak velocity detection utilising state-of-the-art deep learning techniques. The proposed framework consists of a multi-stage convolutional neural network which can process Doppler images spanning arbitrary number of heartbeats, independent from the electrocardiogram signal and any human intervention. Automated measurements are compared to Ground-truth annotations obtained manually by human experts. Results show the proposed model can efficiently detect peak mitral inflow velocity achieving an average F1 score of 0.88 for both E- and A-peaks across the entire test set
    corecore